Закон гука выражения напряжений через деформацию. Закон гука определение и формула

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, - тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Наблюдения показывают, что для большинства упругих тел, таких, как сталь, бронза, дерево и др., величины деформаций пропорциональны величинам действующих сил. Типичный пример, поясняющий это свойство, представляют пружинные весы, у которых удлинение пружины пропорционально действующей силе. Это видно из того, что шкала делений у таких весов равномерна. Как общее свойство упругих тел закон пропорциональности между силой и деформацией был впервые сформулирован Р. Гуком в 1660 г. и опубликован в 1678 г. в сочинении «De potentia restitutiva». В современной формулировке этого закона рассматривают не силы и перемещения точек их приложения, а напряжение и деформацию.

Так, для чистого растяжения полагают:

Здесь - относительное удлинение любого отрезка, взятого в направлении растяжения. Например, если ребра изображенной на рис. 11 призмы до приложения нагрузки были а, b и с, как показано на чертеже, а после деформации они будут соответственно , тогда .

Постоянная Е, имеющая размерность напряжения, называется модулем упругости, или модулем Юнга.

Растяжение элементов, параллельных действующим напряжениям о, сопровождается сокращением перпендикулярных элементов, то есть уменьшением поперечных размеров стержня (на чертеже - размеры ). Относительная поперечная деформация

будет величиной отрицательной. Оказывается, что продольная и поперечная деформации в упругом теле связаны постоянным отношением:

Безразмерная величина v, постоянная для каждого материала, называется коэффициентом поперечного сжатия или коэффициентом Пуассона. Сам Пуассон, исходивший из теоретических соображений, которые оказались впоследствии неверными, считал, что для всех материалов (1829). На самом деле значения этого коэффициента различны. Так, для стали

Заменяя в последней формуле выражением получим:

Закон Гука не является точным законом. Для стали отклонения от пропорциональности между незначительны, тогда как чугун или резнна явно этому закону не подчиняются. Для них причем может быть аппроксимирована линейной функцией разве лишь в самом грубом приближении.

В течение долгого времени сопротивление материалов занималось лишь материалами, подчиняющимися закону Гука, и приложение формул сопротивления материалов к другим телам можно было делать только с большой натяжкой. В настоящее время нелинейные законы упругости начинают изучаться и применяться к решению конкретных задач.

  • 2.6. Предел прочности
  • 2.7. Условие прочности
  • 3.Внутренние силовые факторы (всф)
  • 3.1. Случай воздействия внешних сил в одной плоскости
  • 3.2. Основные соотношения между погонной силой q, поперечной силой Qy и изгибающим моментом Mx
  • Отсюда вытекает соотношение, называемое первым уравнением равновесия элемента балки
  • 4.Эпюры всф
  • 5. Правила контроля построения эпюр
  • 6. Общий случай напряженного состояния
  • 6.1.Нормальные и касательные напряжения
  • 6.2. Закон парности касательных напряжений
  • 7. Деформации
  • 8. Основные предположения и законы, используемые в сопротивлении материалов
  • 8.1. Основные предположения, используемые в сопротивлении материалов
  • 8.2. Основные законы, используемые в сопротивлении материалов
  • При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.
  • 9. Примеры использования законов механики для расчета строительных сооружений
  • 9.1. Расчет статически неопределимых систем
  • 9.1.1. Статически неопределимая железобетонная колонна
  • 9.1.2 Температурные напряжения
  • 9.1.3. Монтажные напряжения
  • 9.1.4. Расчет колонны по теории предельного равновесия
  • 9.2. Особенности температурных и монтажных напряжений
  • 9.2.1. Независимость температурных напряжений от размеров тела
  • 9.2.2. Независимость монтажных напряжений от размеров тела
  • 9.2.3. О температурных и монтажных напряжениях в статически определимых системах
  • 9.3. Независимость предельной нагрузки от самоуравновешенных начальных напряжений
  • 9.4. Некоторые особенности деформирования стержней при растяжении и сжатии с учетом силы тяжести
  • 9.5. Расчет элементов конструкций с трещинами
  • Порядок расчета тел с трещинами
  • 9.6. Расчет конструкций на долговечность
  • 9.6.1. Долговечность железобетонной колонны при наличии ползучести бетона
  • 9.6.2. Условие независимости напряжений от времени в конструкциях из вязкоупругих материалов
  • 9.7 Теория накопления микроповреждений
  • 10. Расчет стержней и стерневых систем на жесткость
  • Составные стержни
  • Стержневые системы
  • 10.1. Формула Мора для вычисления перемещения конструкции
  • 10.2. Формула Мора для стержневых систем
  • 11. Закономерности разрушения материала
  • 11.1. Закономерности сложного напряженного состояния
  • 11.2. Зависимость иот касательных напряжений
  • 11.3. Главные напряжения
  • Вычисление
  • 11.4. Виды разрушений материалов
  • 11.5.Теории кратковременной прочности
  • 11.5.1.Первая теория прочности
  • 11.5.2.Вторая теория прочности
  • 11.5.3.Третья теория прочности (теория максимальных касательных напряжений)
  • 11.5.4.Четвертая теория (энергетическая)
  • 11.5.5. Пятая теория – критерий Мора
  • 12. Краткое изложение теорий прочности в задачах сопротивления материалов
  • 13. Расчет цилиндрической оболочки под воздействием внутреннего давления
  • 14. Усталостное разрушение (циклическая прочность)
  • 14.1. Расчет сооружений при циклическом нагружении с помощью диграммы Вёлера
  • 14.2. Расчет сооружений при циклическом нагружении по теории развивающихся трещин
  • 15. Изгиб балок
  • 15.1. Нормальные напряжения. Формула Навье
  • 15.2. Определение положения нейтральной линии (оси х) в сечении
  • 15.3 Момент сопротивления
  • 15.4 Ошибка Галилея
  • 15.5 Касательные напряжения в балке
  • 15.6. Касательные напряжения в полке двутавра
  • 15.7. Анализ формул для напряжений
  • 15.8. Эффект Эмерсона
  • 15.9. Парадоксы формулы Журавского
  • 15.10. О максимальных касательных напряжениях (τzy)max
  • 15.11. Расчеты балки на прочность
  • 1. Разрушение изломом
  • 2.Разрушение срезом (расслоение).
  • 3. Расчет балки по главным напряжениям.
  • 4. Расчет по III и IV теориям прочности.
  • 16. Расчет балки на жесткость
  • 16.1. Формула Мора для вычисления прогиба
  • 16.1.1 Методы вычисления интегралов. Формулы трапеций и Симпсона
  • Формула трапеций
  • Формула Симпсона
  • . Вычисление прогибов на основе решения дифференциального уравнения изогнутой оси балки
  • 16.2.1 Решение дифференциального уравнения изогнутой оси балки
  • 16.2.2 Правила Клебша
  • 16.2.3 Условия для определения с и d
  • Пример вычисления прогиба
  • 16.2.4. Балки на упругом основании. Закон Винклера
  • 16.4. Уравнение изогнутой оси балки на упругом основании
  • 16.5. Бесконечная балка на упругом основании
  • 17. Потеря устойчивости
  • 17.1 Формула Эйлера
  • 17.2 Другие условия закрепления.
  • 17.3 Предельная гибкость. Длинный стержень.
  • 17.4 Формула Ясинского.
  • 17.5 Продольный изгиб
  • 18. Кручение валов
  • 18.1. Кручение круглых валов
  • 18.2. Напряжения в сечениях вала
  • 18.3. Расчет вала на жесткость
  • 18.4. Свободное кручение тонкостенных стержней
  • 18.5. Напряжения при свободном кручении тонкостенных стержней замкнутого профиля
  • 18.6. Угол закрутки тонкостенных стержней замкнутого профиля
  • 18.7. Кручение стержней открытого профиля
  • 19. Сложная деформация
  • 19.1. Эпюры внутренних силовых факторов (всф)
  • 19.2. Растяжение с изгибом
  • 19.3. Максимальные напряжения при растяжении с изгибом
  • 19.4 Косой изгиб
  • 19.5. Проверка прочности круглых стержней при кручении с изгибом
  • 19.6 Внецентренное сжатие. Ядро сечения
  • 19.7 Построение ядра сечения
  • 20. Динамические задачи
  • 20.1. Удар
  • 20.2 Область применения формулы для коэффициента динамичности
  • Выражение коэффициента динамичности через скорость ударяющего тела
  • 20.4. Принцип Даламбера
  • 20.5. Колебания упругих стержней
  • 20.5.1. Свободные колебания
  • 20.5.2. Вынужденные колебания
  • Способы борьбы с резонансом
  • 20.5.3 Вынужденные колебания стержня с демпфером
  • 21. Теория предельного равновесия и её использование при расчете конструкций
  • 21.1. Задача изгиба балки Предельный момент.
  • 21.2. Применение теории предельного равновесия для расчета
  • Литература
  • Содержание
  • 8.2. Основные законы, используемые в сопротивлении материалов

      Соотношения статики. Их записывают в виде следующих уравнений равновесия.

      Закон Гука (1678 год): чем больше сила, тем больше деформация, причем, прямо пропорционально силе . Физически это означает, что все тела это пружины, но с большой жесткостью. При простом растяжении бруса продольной силой N = F этот закон можно записать в виде:

    Здесь
    продольная сила,l - длина бруса, А - площадь его поперечного сечения, Е - коэффициент упругости первого рода (модуль Юнга ).

    С учетом формул для напряжений и деформаций, закон Гука записывают следующим образом:
    .

    Аналогичная связь наблюдается в экспериментах и между касательными напряжениями и углом сдвига:

    .

    G называют модулем сдвига , реже – модулем упругости второго рода. Как и любой закон, имеет предел применимости и закон Гука. Напряжение
    , до которого справедлив закон Гука, называетсяпределом пропорциональности (это важнейшая характеристика в сопромате).

    Изобразим зависимость от графически (рис.8.1). Эта картина называется диаграммой растяжения . После точки В (т.е. при
    ) эта зависимость перестает быть прямолинейной.

    При
    после разгрузки в теле появляются остаточные деформации, поэтомуназываетсяпределом упругости .

    При достижении напряжением величины σ = σ т многие металлы начинают проявлять свойство, которое называется текучестью . Это означает, что даже при постоянной нагрузке материал продолжает деформироваться (то есть ведет себя как жидкость). Графически это означает, что диаграмма параллельна абсциссе (участок DL). Напряжение σ т, при котором материал течет, называется пределом текучести .

    Некоторые материалы (Ст.3 - строительная сталь) после непродолжительного течения снова начинают сопротивляться. Сопротивление материала продолжается до некоторого максимального значения σ пр, в дальнейшем начинается постепенное разрушение. Величина σ пр - называется пределом прочности (синоним для стали: временное сопротивление, для бетона – кубиковая или призменная прочность). Применяют также и следующие обозначения:

    =R b

    Аналогичная зависимость наблюдается в экспериментах между касательными напряжениями и сдвигами.

    3) Закон Дюгамеля – Неймана (линейного температурного расширения):

    При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.

    Пусть имеется перепад температур
    . Тогда этот закон имеет вид:

    Здесь α - коэффициент линейного температурного расширения , l - длина стержня, Δ l - его удлинение.

    4) Закон ползучести .

    Исследования показали, что все материалы сильно неоднородны в малом. Схематическое строение стали изображено на рис.8.2.

    Некоторые из составляющих обладают свойствами жидкости, поэтому многие материалы под нагрузкой с течением времени получает дополнительное удлинение
    (рис.8.3.) (металлы при высоких температурах, бетон, дерево, пластики – при обычных температурах). Это явление называетсяползучестью материала.

    Для жидкости справедлив закон: чем больше сила, тем больше скорость движения тела в жидкости . Если это соотношение линейно (т.е. сила пропорциональна скорости), то можно записать его в виде:

    Е
    сли перейти к относительным силам и относительным удлинениям, то получим

    Здесь индекс « cr » означает, что рассматривается та часть удлинения, которая вызвана ползучестью материала. Механическая характеристика называется коэффициентом вязкости.

      Закон сохранения энергии.

    Рассмотрим нагруженный брус

    Введем понятие перемещения точки, например,

    - вертикальное перемещение точки В;

    - горизонтальное смещение точки С.

    Силы
    при этом совершают некоторую работуU . Учитывая, что силы
    начинают возрастать постепенно и предполагая, что возрастают они пропорционально перемещениям, получим:

    .

    Согласно закону сохранения: никакая работа не исчезает, она тратится на совершение другой работы или переходит в другую энергию (энергия – это работа, которую может совершить тело.).

    Работа сил
    , тратится на преодоление сопротивления упругих сил, возникающих в нашем теле. Чтобы подсчитать эту работу учтем, что тело можно считать состоящим из малых упругих частиц. Рассмотрим одну из них:

    Со стороны соседних частиц на него действует напряжение . Равнодействующая напряжений будет

    Под действием частица удлинится. Согласно определению относительное удлинение это удлинение на единицу длины. Тогда:

    Вычислим работу dW , которую совершает сила dN (здесь также учитывается, что силы dN начинают возрастать постепенно и возрастают они пропорциональны перемещениям):

    Для всего тела получим:

    .

    Работа W , которую совершило , называютэнергией упругой деформации.

    Согласно закону сохранения энергии:

    6)Принцип возможных перемещений .

    Это один из вариантов записизакона сохранения энергии.

    Пусть на брус действуют силы F 1 , F 2 ,. Они вызывают в теле перемещения точки
    и напряжения
    . Дадим телудополнительные малые возможные перемещения
    . В механике запись вида
    означает фразу «возможное значение величиныа ». Эти возможные перемещения вызовут в теле дополнительные возможные деформации
    . Они приведут к появлению дополнительных внешних сил и напряжений
    , δ.

    Вычислим работу внешних сил на дополнительных возможных малых перемещениях:

    Здесь
    - дополнительные перемещения тех точек, в которых приложены силыF 1 , F 2 ,

    Рассмотрим снова малый элемент с поперечным сечением dA и длиной dz (см. рис.8.5. и 8.6.). Согласно определению дополнительное удлинение dz этого элемента вычисляется по формуле:

    dz =  dz.

    Сила растяжения элемента будет:

    dN = (+δ) dA dA ..

    Работа внутренних сил на дополнительных перемещениях вычисляется для малого элемента следующим образом:

    dW = dN dz = dA  dz =  dV

    С
    уммируя энергию деформации всех малых элементов получим полную энергию деформации:

    Закон сохранения энергии W = U дает:

    .

    Это соотношение и называется принципом возможных перемещений (его называют также принципом виртуальных перемещений). Аналогично можно рассмотреть случай, когда действуют еще и касательные напряжения. Тогда можно получить, что к энергии деформации W добавится следующее слагаемое:

    Здесь  - касательное напряжение,  -сдвиг малого элемента. Тогда принцип возможных перемещений примет вид:

    В отличие от предыдущей формы записи закона сохранения энергии здесь нет предположения о том, что силы начинают возрастать постепенно, и возрастают они пропорционально перемещениям

    7) Эффект Пуассона.

    Рассмотрим картину удлинения образца:

    Явление укорочения элемента тела поперек направления удлинения называется эффектом Пуассона .

    Найдем продольную относительную деформацию.

    Поперечная относительная деформация будет:

    Коэффициентом Пуассона называется величина:

    Для изотропных материалов (сталь, чугун, бетон) коэффициент Пуассона

    Это означает, что в поперечном направлении деформация меньше продольной.

    Примечание : современные технологии могут создать композиционные материалы, у которых коэффициент Пуассон >1, то есть поперечная деформация будет больше, чем продольная. Например, это имеет место для материала, армированного жесткими волокнами под малым углом
    <<1 (см. рис.8.8.). Оказывается, что коэффициент Пуассона при этом почти пропорционален величине
    , т.е. чем меньше, тем больше коэффициент Пуассона.

    Рис.8.8. Рис.8.9

    Еще более удивительным является материал, приведенный на (рис.8.9.), причем для такого армирования имеет место парадоксальный результат – продольное удлинение ведет к увеличению размеров тела и в поперечном направлении.

    8) Обобщенный закон Гука.

    Рассмотрим элемент, который растягивается в продольном и поперечном направлениях. Найдем деформацию, возникающую в этих направлениях.

    Вычислим деформацию , возникающую от действия:

    Рассмотрим деформацию от действия , которая возникает в результате эффекта Пуассона:

    Общая деформация будет:

    Если действует и , то добавиться еще одно укорочение в направлении осиx
    .

    Следовательно:

    Аналогично:

    Эти соотношения называются обобщенным законом Гука.

    Интересно, что при записи закона Гука делается предположение о независимости деформаций удлинения от деформаций сдвига (о независимости от касательных напряжений, что одно и то же) и наоборот. Эксперименты хорошо подтверждают эти предположения. Забегая вперед, отметим, что прочность напротив сильно зависит от сочетания касательных и нормальных напряжений.

    Примечание: Приведенные выше законы и предположения подтверждаются многочисленными прямыми и косвенными экспериментами, но, как и все другие законы, имеют ограниченную область применимости.

    При растяжении и сжатии стержня изменяются его длина и размеры поперечного сечения. Если мысленно выделить из стержня в недеформированном состоянии элемент длиной dx, то после деформации его длина будет равна dx { (рис. 3.6). При этом абсолютное удлинение по направлению оси Ох будет равно

    а относительная линейная деформация е х определяется равенством

    Поскольку ось Ох совпадает с осью стержня, вдоль которой действуют внешние нагрузки, назовем деформацию е х продольной деформацией, у которой в дальнейшем индекс будем опускать. Деформации в направлениях, перпендикулярных к оси, называются поперечными деформациями. Если обозначить через b характерный размер поперечного сечения (рис. 3.6), то поперечная деформация определяется соотношением

    Относительные линейные деформации являются безразмерными величинами. Установлено, что поперечные и продольные деформации при центральном растяжении и сжатии стержня связаны между собой зависимостью

    Входящая в это равенство величина v называется коэффициентом Пуассона или коэффициентом поперечной деформации. Этот коэффициент является одной из основных постоянных упругости материала и характеризует его способность к поперечным деформациям. Для каждого материала он определяется из опыта на растяжение или сжатие (см. § 3.5) и вычисляется по формуле

    Как следует из равенства (3.6), продольные и поперечные деформации всегда имеют противоположные знаки, что является подтверждением очевидного факта - при растяжении размеры поперечного сечения уменьшаются, а при сжатии увеличиваются.

    Для различных материалов коэффициент Пуассона различен. Для изотропных материалов он может принимать значения в пределах от 0 до 0,5. Например, для пробкового дерева коэффициент Пуассона близок к нулю, а для резины он близок к 0,5. Для многих металлов при нормальных температурах величина коэффициента Пуассона находится в пределах 0,25+0,35.

    Как установлено в многочисленных экспериментах, для большинства конструкционных материалов при малых деформациях между напряжениями и деформациями существует линейная связь

    Этот закон пропорциональности впервые был установлен английским ученым Робертом Гуком и называется законом Гука.

    Входящая в закон Гука постоянная Е называется модулем упругости. Модуль упругости является второй основной постоянной упругости материала и характеризует его жесткость. Поскольку деформации являются безразмерными величинами, из (3.7) следует, что модуль упругости имеет размерность напряжения.

    В табл. 3.1 приведены значения модуля упругости и коэффициента Пуассона для различных материалов.

    При проектировании и расчетах конструкций наряду с вычислением напряжений необходимо также определять перемещения отдельных точек и узлов конструкций. Рассмотрим способ вычисления перемещений при центральном растяжении и сжатии стержней.

    Абсолютное удлинение элемента длиной dx (рис. 3.6) согласно формуле (3.5) равно

    Таблица 3.1

    Наименование материала

    Модуль упругости, МПа

    Коэффициент

    Пуассона

    Сталь углеродистая

    Сплавы алюминия

    Сплавы титана

    (1,15-s-1,6) 10 5

    вдоль волокон

    (0,1 ^ 0,12) 10 5

    поперек волокон

    (0,0005 + 0,01)-10 5

    (0,097 + 0,408) -10 5

    Кладка из кирпича

    (0,027 +0,03)-10 5

    Стеклопластик СВАМ

    Текстолит

    (0,07 + 0,13)-10 5

    Резина на каучуке

    Интегрируя это выражение в пределах от 0 до х, получим

    где и(х ) - осевое перемещение произвольного сечения (рис. 3.7), а С= и(0) - осевое перемещение начального сечения х = 0. Если это сечение закреплено, то и(0) = 0 и перемещение произвольного сечения равно

    Удлинение или укорочение стержня равно осевому перемещению его свободного торца (рис. 3.7), величину которого получим из (3.8), приняв х = 1:

    Подставив в формулу (3.8) выражение для деформации? из закона Гука (3.7), получим

    Для стержня из материала с постоянным модулем упругости Е осевые перемещения определяются по формуле

    Входящий в это равенство интеграл можно вычислить двумя способами. Первый способ заключается в аналитической записи функции а(х) и последующем интегрировании. Второй способ основан на том, что рассматриваемый интеграл численно равен площади эпюры а на участке . Вводя обозначение

    Рассмотрим частные случаи. Для стержня, растягиваемого сосредоточенной силой Р (рис. 3.3, а), продольная сила./Vпостоянна по длине и равна Р. Напряжения а согласно (3.4) также постоянны и равны

    Тогда из (3.10) получаем

    Из этой формулы следует, что если напряжения на некотором участке стержня постоянны, то перемещения изменяются по линейному закону. Подставляя в последнюю формулу х = 1, найдем удлинение стержня:

    Произведение EF называется жесткостью стержня при растяжении и сжатии. Чем больше эта величина, тем меньше удлинение или укорочение стержня.

    Рассмотрим стержень, находящийся под действием равномерно распределенной нагрузки (рис. 3.8). Продольная сила в произвольном сечении, отстоящем на расстоянии х от закрепления, равна

    Разделив N на F, получим формулу для напряжений

    Подставляя это выражение в (3.10) и интегрируя, находим


    Наибольшее перемещение, равное удлинению всего стержня, получим, подставив в (3.13)х = /:

    Из формул (3.12) и (3.13) видно, что если напряжения линейно зависят отх, то перемещения изменяются по закону квадратной параболы. Эпюры N, о и и показаны на рис. 3.8.

    Общая дифференциальная зависимость, связывающая функции и(х) и а(х), может быть получена из соотношения (3.5). Подставляя в это соотношение е из закона Гука (3.7), найдем

    Из этой зависимости следуют, в частности, отмеченные в рассмотренных выше примерах закономерности изменения функции и(х).

    Кроме того, можно заметить, что если в каком-либо сечении напряжения а обращаются в нуль, то на эпюре и в этом сечении может быть экстремум.

    В качестве примера построим эпюру и для стержня, изображенного на рис. 3.2, положив Е- 10 4 МПа. Вычисляя площади эпюры о для различных участков, находим:

    сечение х = 1 м:

    сечение х = 3 м:

    сечение х = 5 м:

    На верхнем участке стержня эпюра и представляет собой квадратную параболу (рис. 3.2, е). При этом в сечении х = 1 м имеется экстремум. На нижнем участке характер эпюры является линейным.

    Общее удлинение стержня, которое в данном случае равно

    можно вычислить, воспользовавшись формулами (3.11) и (3.14). Поскольку нижний участок стержня (см. рис. 3.2, а) растягивается силой Р { его удлинение согласно (3.11) равно

    Действие силы Р { передается также и на верхний участок стержня. Кроме того, он сжимается силой Р 2 и растягивается равномерно распределенной нагрузкой q. В соответствии с этим изменение его длины вычисляется по формуле

    Суммируя значения А/, и А/ 2 , получим тот же результат, что приведен выше.

    В заключение следует отметить, что, несмотря на малую величину перемещений и удлинений (укорочений) стержней при растяжении и сжатии, пренебрегать ими нельзя. Умение вычислять эти величины важно во многих технологических задачах (например, при монтаже конструкций), а также для решения статически неопределимых задач.